Variations in Heavy Ion Composition with Geomagnetic Activity and Season

Mayura Kulkarni, Raluca Ilie, Mei-Yun Lin, and Hsinju Chen* (hsinjuc2@illinois.edu) Heliophysics Research and Applications (HeRA), Department of Electrical & Computer Engineering, University of Illinois at Urbana-Champaign

X

MOTIVATION

- Under various environmental conditions, such as solar activity, seasons, etc., the ion composition in the ionosphere may reflect the change.
- How does ion composition in the ionosphere vary with seasons?
- What is the response of ion composition during solar storms?
- Understanding the relation between these factors and heavy ion composition in the ionosphere provides us insight to heavy ion energization sources as well as the overall ionosphere-magnetosphere system.

NASA's Orbiting Geophysical Observatory(OGO) 6

Operation : June 5, 1969 — March 1972 Purpose .: study high-altitude plasma parameters (26 experiments) BIMS : one of the first & few instruments to measure densities for 7 ion species

> perigee: 413.00 km apogee: 1077.00 km

> > f = 99.70 min

: H⁺, He⁺, N⁺, O⁺, N₂⁺, NO⁺, O₂⁺ Duration : June 12, 1969 — December 31, 1970 Mass Range : 1 — 45 amu Resolution: 1 in 20 amu & 2° in latitude

Frequency: every 36.8 s

lons

Sensitivity : 1.0×10⁶ — 10 ions/ccm

HEMISPHERIC ASYMMETRY

H_JRA

grant 088705.

DATA VALIDATION

1100 \

1000

900

800

700

600

500

400 -

3.0

n(N+) are consistently 1 order of magnitude less than n(O+) during the summer, validated with Craven et al., 1993 (dotted line).

CONCLUSIONS

Hemispheric asymmetry:

- n(N⁺) and n(O⁺) are higher in the

northern than the southern hemisphere.

Geomagnetic-activity variation

- n(N⁺), n(O⁺) and n(NO⁺) are observed to increase ~1 order of magnitude during storm times.
- Measurements for NO+ are sparse, but it is evident that the n(NO⁺) perform strong day-night
- asymmetry at all times.

- N+/O+ density ratio shows the larger variation during winter than summer seasons.

ACKNOWLEDGMENTS

This work at the University of Illinois at Urbana–Champaign was financially supported by the NASA ECIP award 101049, NASA LWS grant 101805, and NSF

