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MOTIVATION IDEALIZED CONDITION: E & B FIELDS magnetic field lines [Nn+:No+=1:1]— [NN+:No+=1:3] —

- Heavy lons regulate many magnetosphere processes. 2h 30m 3h 30m Ax(X-line) = -2.0 % @ 2h 30m Ax(X-line) % 0.0 % @ 8h A|E|(%) 30
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- N*ions have been observed in the ionosphere & - Bz (idealizefi)
magnetosphere since the 1960s, but instrumentation | — ux (idealized)
limitations have hindered further understanding of _ XZ ((iig:::iiz:j))
their dynamics. [Chappell et al.,, 1982; Lin et al., 2022] |
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- N(N*) can be comparable to n(O*) In the inner m

magnetosphere. [Craven, 1993]
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- What is the impact of inner magnetospheric plasma | T \\ 0
| main phase : A

mMass density on the global magnetosphere Sep 08 00 T-0002:3 T-0008:00
configuration?
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STORM CON DlTlON: MASS DENS'TY trajectories of operating spacecrafts in Sep 2017
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METHODOLOGY
.- Multifluid Magnetohydrodynamics (MHD): H*, N+, O*

.+ Space Weather Modeling Framework (SWMF) | ion velocity streamtraces H*, N*, O+
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the magnetosphere.

. Inner Boundary lon Density Setup (2;p; = 28 cm=3).

[N+ :no+=T1:1] 80% H*, 10% N*, 10% O . .
vs. [Nne:hor =1:3] 80% H*, 5% N* 15% O* @ 2.5 Re - Heavy ion streamtraces differ greatly between the two cases. UNIVERSITY OF

. Domain: 292 Re x 256 Re x 256 Re (~2.6M cells) - The magnetic field difference between the two cases is more prominent in observed conditions. I LLI N OIS
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